Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://open.ni.ac.rs/handle/123456789/11
Назив: Performance comparison of meta-heuristic algorithms for training artificial neural networks in modelling laser cutting
Аутори: Madić, Miloš 
Markovic D.
Radovanović, Miroslav 
Датум издавања: 1-дец-2012
Часопис: International Journal of Advanced Intelligence Paradigms
Сажетак: The application of artificial neural networks (ANNs) for modelling laser cutting is broad and ever increasing. The practical application of ANNs is mostly dependent on the success of the training process which is a complex task. Considering the disadvantages of backpropagation (BP) such as the convergence to local minima and slow convergence, this paper aims at investigating the possibilities of using novel meta-heuristic algorithms such as improved harmony search algorithm (IHSA) and cuckoo search algorithm (CSA) for training ANNs in modelling laser cutting. The validity and efficiency of the algorithms were verified by comparing the results with ANN model trained with real coded genetic algorithm (RCGA) which's superiority over BP has been well-documented. Statistical methods of the correlation coefficient and absolute percentage error indicate that the search space exploration capability of the IHSA and CSA are comparable to RCGA. It was shown that all three algorithms could be efficiently used for training of ANNs in modelling laser cutting. Copyright © 2012 Inderscience Enterprises Ltd.
URI: https://open.ni.ac.rs/handle/123456789/11
ISSN: 17550386
DOI: 10.1504/IJAIP.2012.052073
Налази се у колекцијама:Naučne i umetničke publikacije

Приказати целокупан запис ставки

SCOPUSTM   
Навођења

7
проверено 03.08.2020.

Google ScholarTM

Проверите

Алт метрика


Ставке на DSpace-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.